Kimmo Mustonen (Vienna / AT), Manuel Längle (Vienna / AT), Alberto Trentino (Vienna / AT), Georg Zagler (Vienna / AT), Christoph Hofer (Antwerp / BE; Vienna / AT), Alexander Markevich (Vienna / AT), Heena Inani (Vienna / AT), Clemens Mangler (Vienna / AT), Timothy J. Pennycook (Vienna / AT; Antwerp / BE), Viera Skakalova (Vienna / AT; Bratislava / SK), Toma Susi (Vienna / AT), Jannik C. Meyer (Tübingen / DE; Vienna / AT), Jani Kotakoski (Vienna / AT)
Abstract text (incl. figure legends and references)
Graphene--the one-atom-thick sheet of carbon--is the most famous of 2D materials due to its unique electronic properties and mechanical strength. However, its chemical inertness makes graphene also an excellent nearly electron-transparent support for other materials and nanostructures. In this presentation, I will give an overview of our recent work, partially enabled by a unique interconnected vacuum system containing an aberration-corrected scanning transmission electron microscope (Nion UltraSTEM 100) with a unique objective area that allows sample cleaning via laser, in situ chemical experiments, and direct vacuum transfer to an atomic force microscope (AFSEM by GeTEC Microscopy), an argon glove box, a chamber for alteration and growth of materials equipped with a plasma ion source and evaporators, and long-term vacuum sample storage.
Specifically, I will show that otherwise unstable structures such as a monolayer of fullerenes [1], 2D CuI [2] and small noble gas clusters [3] can be stabilized in the van der Waals gap between two graphene sheets allowing also their atomic-resolution imaging. If time allows, I will further demonstrate that defect-engineering of graphene [4] enables its substitutional heteroatom doping [5] and growth of nanoclusters with a well-defined concentration and a narrow size distribution, as well as the direct correlation of its atomic structure and mechanical properties.
References
[1] Mirzayev et al., Sci. Adv. 3, e1700176 (2017)
[2] Mustonen et al., Adv. Mater., 202106922 (2022)
[3] Längle et al., Microsc. Microanal. 26 S2, 1086-1089 (2020)
[4] Trentino et al., Nano Lett. 21, 5179-5185 (2021)
[5] Inani et al., J. Phys. Chem. C 123, 13136-13140 (2019); Zagler et al., 2D Mater. 9, 035009 (2022); Trentino et al., 2D Mater. 9, 025011 (2022)
Auf unserem Internetauftritt verwenden wir Cookies. Bei Cookies handelt es sich um kleine (Text-)Dateien, die auf Ihrem Endgerät (z.B. Smartphone, Notebook, Tablet, PC) angelegt und gespeichert werden. Einige dieser Cookies sind technisch notwendig um die Webseite zu betreiben, andere Cookies dienen dazu die Funktionalität der Webseite zu erweitern oder zu Marketingzwecken. Abgesehen von den technisch notwendigen Cookies, steht es Ihnen frei Cookies beim Besuch unserer Webseite zuzulassen oder nicht.