Karen Brunsbach (Aachen / DE), Anna Christina Ngo (Bochum / DE), Ramineh Rad (Bochum / DE), Dirk Tischler (Bochum / DE), Ulf-Peter Apfel (Bochum / DE), Lars Lauterbach (Aachen / DE)
Introduction: The conversion of the potent greenhouse gas methane to methanol presents a promising method for reducing emissions while producing valuable chemicals. Unlike standard industrial catalysts, soluble methane monooxygenases (sMMO) offer an environmentally friendly alternative by converting methane to methanol under mild conditions1,2. In vivo systems maintain enzyme stability and activity in a controlled cellular environment, thereby increasing the overall efficiency of the reaction. E. coli offers faster growth rates and easier genetic manipulation than methanotrophic organisms, making it a more practical host for bioengineering applications targeting methanol production.
Goals: This study explores using an engineered E. coli system for methane-to-methanol conversion by introducing synthetic metabolic pathways alongside a soluble NAD+-reducing hydrogenase (SH) for cofactor recycling to increase process sustainability1,3. A connected zero-gap electrolyzer system with selective permeability decouples mass and electron transfer, allowing precise redox control and facilitate proton exchange without direct contact between the cathode and anode4.
Materials & Methods: Our engineered E. coli features two plasmid integrations encoding 1) SH for H2-driven NAD+-reduction and 2) sMMO for methane oxidation. In addition, the adaptable plasmid design allows rapid sMMO mutagenesis to expand the substrate range.
Results: We successfully achieved robust heterologous expression of active SH in E. coli under challenging aerobic conditions. We also demonstrated sMMO production in E. coli, opening new ways for methane-to-methanol conversion in a highly versatile host system1.
Summary: We develop a sustainable method to convert methane to methanol in engineered E. coli, reducing emissions and creating valuable chemicals. Enhancing sMMO activity and NADH recycling via SH with a zero-gap cell offers a low-energy alternative to traditional methanol production and enables precise redox control for broader electrobiochemical applications.
1] D. Zill, E. Lettau, C. Lorent, F. Seifert, P. K. Singh, L. Lauterbach, ChemBioChem 2022, 23, e202200195.
2] F. J. Tucci, A. C. Rosenzweig, Chem. Rev. 2024, 124, 1288–1320.
3] A. Al-Shameri, N. Borlinghaus, L. Weinmann, P. N. Scheller, B. M. Nestl, L. Lauterbach, Green Chem. 2019, 21, 1396–1400.
4] R. Rad, T. Gehring, K. Pellumbi, D. Siegmund, E. Nettmann, M. Wichern, U.-P. Apfel, Cell Reports Physical Science 2023, 4, 101526.
Auf unserem Internetauftritt verwenden wir Cookies. Bei Cookies handelt es sich um kleine (Text-)Dateien, die auf Ihrem Endgerät (z.B. Smartphone, Notebook, Tablet, PC) angelegt und gespeichert werden. Einige dieser Cookies sind technisch notwendig um die Webseite zu betreiben, andere Cookies dienen dazu die Funktionalität der Webseite zu erweitern oder zu Marketingzwecken. Abgesehen von den technisch notwendigen Cookies, steht es Ihnen frei Cookies beim Besuch unserer Webseite zuzulassen oder nicht.