Peter Erlsbacher (Graz / AT), Hanna C. Grimm (Hannover / DE; Graz / AT), Hitesh Medipally (Stockholm / SE; Graz / AT), Lenny Malihan-Yap (Graz / AT), Lucija Sovic (Graz / AT), Johannes Zöhrer (Graz / AT), Sergey N. Kosourov (Turku / FI), Yagut Allahverdiyeva (Turku / FI), Caroline E. Paul (Delft / NL), Robert Kourist (Graz / AT)
Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents, such as NADPH, from water and light via oxygenic photosynthesis. However, effective light distribution is hindered by self-shading effects within photosynthetic cells and extended light paths, significantly limiting scalability.
We introduced a flat-panel photobioreactor with a 1-cm optical path length as a scalable system to provide efficient light distribution at high cell densities. Genes encoding five distinct classes of ene-reductases were heterologously expressed in Synechocystis sp. PCC 6803. The resulting strains were evaluated for their efficacy in light-driven ene-reduction reactions across a range of prochiral substrates.
Under standard small-scale reaction conditions, the recombinant strains expressing the ene-reductases OYE3 and mutated TsOYE demonstrated specific activities of up to 150 U gCDW⁻¹, marking the highest activities recorded for photobiotransformations to date. These strains were chosen for scale-up in a 120-mL flat-panel photobioreactor. The strains achieved volumetric productivities up to 1 g L⁻¹ h⁻¹, surpassing current photosynthesis-driven processes. This setup enabled the conversion of 50 mM 2-methyl maleimide in a fed-batch within approximately 8 hours. The atom economy of this process reached 88% outperforming traditional processes relying on sacrificial cosubstrates such as glucose and formic acid. An E-Factor of 203 indicates that volumetric yield and water consumption for cell cultivation are critical parameters impacting process sustainability.
In summary, we highlight essential factors influencing the sustainability of light-driven whole-cell biotransformations, establishing a robust foundation for future optimization and scale-up efforts in photosynthesis-driven bioproduction
Auf unserem Internetauftritt verwenden wir Cookies. Bei Cookies handelt es sich um kleine (Text-)Dateien, die auf Ihrem Endgerät (z.B. Smartphone, Notebook, Tablet, PC) angelegt und gespeichert werden. Einige dieser Cookies sind technisch notwendig um die Webseite zu betreiben, andere Cookies dienen dazu die Funktionalität der Webseite zu erweitern oder zu Marketingzwecken. Abgesehen von den technisch notwendigen Cookies, steht es Ihnen frei Cookies beim Besuch unserer Webseite zuzulassen oder nicht.