Estefanía Núñez (Madrid / ES), Enrique Calvo (Madrid / ES), María Gómez-Serrano (Marburg / DE), Leticia Fernández-Friera (Madrid / ES), Antonio Fernández-Ortiz (Madrid / ES), Borja Ibañez (Madrid / ES), Jesús Vázquez (Madrid / ES)
Translational Proteomics, crucial for protein analysis in clinical samples, aims to achieve three key objectives: i) analyze extensive cohorts rapidly; ii) quantify a high number of proteins per sample using hypothesis-free and non-targeted analysis; and iii) integrate robust statistical models for quantitative data analysis. In an effort to attain these goals, we report here a novel, rapid and hypothesis-free workflow using multiplexed labelling that allows the analysis of thousands of plasma samples without the need for high-stable mass spectometers. This approach enables accurate and reproducible quantification of over a thousand of proteins. The described workflow successfully analyzed more than 1300 non-depleted plasma samples (across 130 TMT experiments), yielding highly reproducible results. The analysis of 600 proteins per experiment was achieved without peptide fractionation in a swift 6-hour timeframe per experiment, completing the entire process in just two weeks. Moreover, peptide fractionation, while extending the analysis to over 1000 proteins, required 30 hours per experiment, spanning a two-month duration. Although protein yield was higher in depleted samples, depletion introduced a quantification bias affecting approximately half of the plasma proteome, as revealed by hierarchical clustering analysis. Notably, a high correlation between biochemical quantitation and mass spectrometry measurements was observed for several proteins (p<1e-17). Additionally, the selection of a longitudinal prospective cohort (baseline and three-years follow up) enabled us to analyze the long-term stability of the plasma proteome. We observed that proteins from 84% of the individuals showed a significant correlation (FDR<5%) along time. Finally, the study identified gender-discriminating proteins. These results highlight the robustness of the new method for high-throughput quantitative analysis of the deep plasma proteome that could facilitate and improve clinical proteomics discovery in human blood plasma.
Auf unserem Internetauftritt verwenden wir Cookies. Bei Cookies handelt es sich um kleine (Text-)Dateien, die auf Ihrem Endgerät (z.B. Smartphone, Notebook, Tablet, PC) angelegt und gespeichert werden. Einige dieser Cookies sind technisch notwendig um die Webseite zu betreiben, andere Cookies dienen dazu die Funktionalität der Webseite zu erweitern oder zu Marketingzwecken. Abgesehen von den technisch notwendigen Cookies, steht es Ihnen frei Cookies beim Besuch unserer Webseite zuzulassen oder nicht.