Back
  • Abstract talk
  • MS4.002

Tuning interface sharpness and interface superconductivity at La2CuO4 heterostructures

Appointment

Date:
Time:
Talk time:
Discussion time:
Location / Stream:
spectrum A

Session

Functional thin films

Topics

  • IM 2: Spectroscopy
  • MS 4: Functional thin films

Authors

Y. Eren Suyolcu (Stuttgart / DE), Yu-Mi Wu (Stuttgart / DE), Gideok Kim (Stuttgart / DE), Georg Christiani (Stuttgart / DE), Bernhard Keimer (Stuttgart / DE), Gennady Logvenov (Stuttgart / DE), Peter A. van Aken (Stuttgart / DE)

Abstract

Abstract text (incl. figure legends and references)

Heterostructures of transition-metal oxides enable emerging unique physical properties at their interfaces [1]. The structural adaptability of La2CuO4 allows for designing different heterostructures, and superconductivity takes place at the interface between overdoped (metallic) and undoped (insulating) La2CuO4 layers grown by oxide molecular beam epitaxy (MBE)[2]. In addition to homo-epitaxial systems[3], heterogeneous multilayers of La2CuO4 with, for example, perovskite 113-type and 214-type lanthanum nickelate layers revealed the impact of the interface sharpness on thermoelectric and superconducting properties, respectively [4,5].

In this work, we fabricate (La,Sr)2CuO4–SrMnO–LaMnO3–La2CuO4 superlattices [6] using oxide MBE and focus on the interface sharpness and the related superconducting mechanism compared to cuprate–cuprate interfaces. We use scanning transmission electron microscopy (STEM) techniques, including high-angle annular dark-field (HAADF) and annular bright-field (ABF) imaging, electron energy-loss spectroscopy (EELS), and energy-dispersive X-ray spectroscopy (EDXS) to examine the interfaces. A JEOL JEM-ARM200F STEM equipped with a cold field-emission electron source, a probe Cs-corrector (DCOR, CEOS GmbH), a Gatan GIF Quantum ERS spectrometer and a large solid-angle JEOL Centurio SDD-type EDXS detector was used for atomic-resolution analyses.

Our findings demonstrate that hetero-epitaxial cuprate–manganite layers can achieve sharper Sr-doped La2CuO4 interfaces. The dopant distribution in La2CuO4 is affected by the elemental intermixing in the first atomic LaMnO3 monolayer. We further underline that structurally sharp interfaces can be chemically rough (Fig. 1), and the chemical intermixing dominates the physical properties. Importantly, different superconducting behaviour (e.g., interface vs filamentary) can be customized with interfacial design [7].

References

[1] Y. E. Suyolcu, G. Christiani, P. A. van Aken, G. Logvenov, J. Supercond. Nov. Magn. 2020, 33, 107.

[2] A. Gozar, G. Logvenov, L. F. Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, I. Bozovic, Nature 2008, 455, 782.

[3] Y. E. Suyolcu, Y. Wang, F. Baiutti, A. Al-Temimy, G. Gregori, G. Cristiani, W. Sigle, J. Maier, P. A. van Aken, G. Logvenov, Sci. Rep. 2017, 7, 453.

[4] F. Baiutti, G. Gregori, Y. E. Suyolcu, Y. Wang, G. Cristiani, W. Sigle, P. A. van Aken, G. Logvenov, J. Maier, Nanoscale 2018, 10, 8712.

[5] P. Kaya, G. Gregori, F. Baiutti, P. Yordanov, Y. E. Suyolcu, G. Cristiani, F. Wrobel, E. Benckiser, B. Keimer, P. A. van Aken, H.-U. Habermeier, G. Logvenov, J. Maier, ACS Appl. Mater. Interfaces 2018.

[6] G. Kim, Y. Khaydukov, M. Bluschke, Y. E. Suyolcu, G. Christiani, K. Son, C. Dietl, T. Keller, E. Weschke, P. A. van Aken, G. Logvenov, B. Keimer, Phys. Rev. Mater. 2019, 3, 084420.

[7] This work has received funding the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823717 – ESTEEM3.

Figure 1. (a) STEM-HAADF image of a La2CuO4–SrMnO3–LaMnO3–La2CuO4 superlattice demonstrating coherent "A" and "B" interfaces. (b) EDX line-scan profiles reveal Cu (red) and Mn (green) intermixing at the interfaces. Sr (orange) and La (blue) profiles are given as guides indicating the individual layers. The blue arrow depicts the region of the acquired EDX line scan profiles.

  • © Conventus Congressmanagement & Marketing GmbH