Back
  • Invited talk
  • IM3.004-invited

Crystals and grains – EBSD in 2+ dimensions

Appointment

Date:
Time:
Talk time:
Discussion time:
Location / Stream:
aurum

Session

SEM and FIB developments

Topic

  • IM 3: SEM and FIB developments

Description

References 1) Cloots et al. (2016) Mat. Sc. Eng. A658, 68-76, doi:10.1016/j.msea.2016.01.058
2) Kunze et al. (2014) Mat. Sc. Eng. A620, 213-222, doi:10.1016/j.msea.2014.10.003
3) Geiger et al. (2016) Mat. Sc. Eng. A661, 240-246, doi:10.1016/j.msea.2016.03.036
4) Etter et al. (2015) IOP Conf. Series: Mat. Sc. Eng. 82, 012097, doi:10.1088/1757-899X/82/1/012097
5) Niu et al. (2022) Energy Environ. Sci.15, 2002-2010, doi:10.1039/d1ee03696c
6) Barroo et al. (2020) Nature Cat. 3, 30-39, doi:10.1038/s41929-019-0395-3
7) Basu et al. (2022) Acta Mater. 229, 117746, doi:10.1016/j.actamat.2022.117746
8) Prieto et al. (2017) Nanotechnology 28,135701 doi:10.1088/1361-6528/aa5ec4
9) Wang & Zaefferer (2017) Mat. Charact. 130, 33-38, doi:10.1088/1361-6528/aa5ec4
10) Becker et al. (2022) Crystals 12, 813, doi:10.3390/cryst12060813
11) Seita et al. (2016) npj Comp. Mat. 2, 16016, doi:10.1038/npjcompumats.2016.16
12) Laleh et al. (2021) Scrpta Mat 192, 115-119, doi:10.1016/j.scriptamat.2020.10.018
13) Saylor et al. (2004) Metall. Mater. Trans. A35, 1981-1989, doi:10.1007/s11661-004-0147-z
14) Rohrer et al. (2004) Z. Met., 95, 197-214, doi:10.3139/146.017934
15) Zaefferer et al. (2008) Metall. Mater. Trans. A39, 374-389, doi:10.1007/s11661-007-9418-9
16) Echlin et al. (2015) Mat. Charact.100, 1-12, doi: 10.1016/j.matchar.2014.10.023
17) Kelly et al. (2016) Acta Mater. 111, 22-30, doi:10.1016/j.actamat.2016.03.029
18) Tsai et al. (2022) Rev.Sc. Instr. 93, 093707, doi:10.1063/5.0087945
19) Winkelmann et al (2021) J. Micr. 284, 157-184, doi:10.1111/jmi.13051
20) Lenthe et al. (2019). Ultramicroscopy 207, 112841, doi:10.1016/j.ultramic.2019.112841
21) Kunze et al. (1994) MSF 157-162, 1243-1248, doi:10.4028/www.scientific.net/MSF.157-162.1243
22) Heidelbach et al. (2000) JSG 22, 91-104, doi:10.1016/S0191-8141(99)00125-X
23) Winkelmann & Nolze (2015) Ultramicroscopy 149, 58-63, doi:10.1063/1.4907938

Authors

Karsten Kunze (Zurich / CH)

Abstract

Abstract text (incl. figure legends and references)

Electron backscatter diffraction (EBSD) is a widespread microanalytical method to characterize crystal orientations, phases and defects in typically polycrystalline materials. At the core facility ScopeM, we are supporting user requests in a diversity of applications, also involving characterization by EBSD. Thus, in the first part of this presentation, a number of projects are presented, with emphasis on the links between microstructures and textures to the anisotropy of physical properties, and the effects of different processing routes for tuning them to the most desired properties. These in include the microstructural characterization and elastic anisotropy of additively manufactured Ni-based superalloys (1-4) produced by powder bed laser fusion (PBLF or SLM); crystal orientation dependent photoelectrochemical performance of thermally-oxidised Cu2O photocathodes (5); grain orientation dependent catalyzed surface reactions observed by in-situ experiments (6); twinning mediated plasticity in lean Mg alloys (7); bi-modal nanoheteroepitaxy of GaAs on Si (8).

In the second part, a few recent developments are highlighted. As one of the general bottlenecks, EBSD is typically performed on 2D surfaces of bulk materials. Thus, planar features in three-dimensional microstructures, like interface planes or grain boundaries, are only accessible by their traces on the planar sample surface. A number of approaches has been applied to reveal the missing degree of freedom in order to obtain the complete 5-parameter grain boundary character in a statistically reliable population. These could be pseudo-3D EBSD (9); habit plane analysis (10); hybrid analysis by EBSD and optical reflectance on top and bottom sides (11); large number statistics on 2D mappings (12-14); and serial sectioning by (P)FIB, fs-laser or polishing robots (15-18). Finally, not only speed and sensitivity of EBSD detectors continue to see major developments. Also, the processing of EBSD patterns has advanced from conventional Hough transform based band detection and indexing to pattern matching approaches, where the recorded patterns are compared to the best-fit from a dictionary of simulated patterns (19-20). In the case of quartz microstructures, these simulations demonstrate the potential of EBSD to distinguish not only Dauphiné twin orientations (21-22), but even the handedness of left-handed and right-handed crystals (23), and polarity in other non-centrosymmetric structures.

  • © Conventus Congressmanagement & Marketing GmbH