Erlangen
Universitätsklinikum Erlangen
Structural network analysis in patients with IDH-mutant gliomas grade 2 and 3
Immature Neuronal Niches and ECM Remodeling Drive Epileptogenicity in Gangliogliomas: Insights from Spatial Transcriptomics
Developing Personalized T-cell therapy for glioblastoma patient
Stimulated Raman Histology Shows A Specific Uptake Of 5-ALA By Elements Of The Tumor Microenvironment
Core2Edge: A Human Glioblastoma Organoid and Brain Slice Co-Culture Model Capturing Tumor Infiltration and Transcriptional Heterogeneity from Core to Single-Cell Dispersion
Clinical and molecular predictors for outcome in IDH-mutant gliomas WHO grade 2 and 3 diagnosed per WHO 2021 classification: effects of delayed time to diagnosis and treatment
Impact of Depression and Antidepressant Treatment on Survival and Tumor Dynamics in RTK2 Glioblastomas
Lymph node metastasis of an IDH-mutant astrocytoma grade 4: case report and systematic review of the pertinent literature
BRAF- and PTPN11-altered glioblastomas: Good or Bad?
Tumor-Network response to temozolomide
Deciphering the Chordoma Tumor Microenvironment: Multiomic Single-Cell and Spatial Transcriptomics Insights Guiding Systematic Clinical Trials
Optimized Workflow for Intraoperative Classification of CNS Tumors by Nanopore Sequencing
Dissecting spatial diversity and genetic complexity of glioblastoma
Glioblastoma in the Connectome: Neural Phenotypes Predict Tumor Integrationand Connectivity
Inflammatory Microglia Activation Drives Tumor-Neural Synaptogenesis
Immunological changes after IDH-inhibition in low-grade glioma patients
Deciphering neural-immune reciprocal interactions in glioblastoma using 3D single-cell spatial transcriptomics
Unraveling the Mysteries of Gliosarcoma: Spatial Insights into a Rare Tumor
Advanced machine learning to detect heterogeneity of cell cycle alterations during TMZ chemotherapy at single cell level
Molecular-guided Neurosurgery: Detection of Neural-Score through intraoperative epigenetic profiling
Spatially informed metabolic classification through graph attention deep-learning
Auf unserem Internetauftritt verwenden wir Cookies. Bei Cookies handelt es sich um kleine (Text-)Dateien, die auf Ihrem Endgerät (z.B. Smartphone, Notebook, Tablet, PC) angelegt und gespeichert werden. Einige dieser Cookies sind technisch notwendig um die Webseite zu betreiben, andere Cookies dienen dazu die Funktionalität der Webseite zu erweitern oder zu Marketingzwecken. Abgesehen von den technisch notwendigen Cookies, steht es Ihnen frei Cookies beim Besuch unserer Webseite zuzulassen oder nicht.